AN APPROACH TO THE ENANTIOCONTROLLED SYNTHESIS OF PSEUDOMONIC ACIDS VIA A NOVEL MONO-CLAISEN REARRANGEMENT

Dennis P. Curran*¹
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Abstract: A short, efficient approach to a key chiral intermediate for the synthesis of pseudomonic acids A and C is delineated.

Pseudomonic acids $A(\underline{1a})$, $B(\underline{1b})$, and $C(\underline{2})$ are members of a novel class of "C-glycopyranoside" antimicrobial agents which have recently attracted synthetic attention.² Presently, we wish to report a short efficient strategy towards the total synthesis of optically active pseudomonic acids. The sequence is highlighted by a novel controlled mono-Claisen rearrangement and a highly regionselective π -allylpalladium mediated displacement.

Diacetyl-(L)-arabinal $(\underline{3})^3$ was converted to the bis-ketenesilylacetal $\underline{4}$ and warmed to 60°C according to the Ireland ester-enolate Claisen rearrangement method.⁴ Over a period of ~5h, smooth conversion to a major rearranged product $\underline{5}$ was observed by 300 MHz NMR. The identity of $\underline{5}$ was confirmed by direct desilylation and methylation (KF, KHCO₃, H₂O, HMPA, CH₃I). After flash chromatography, compound $\underline{7}$ was isolated in 55% overall yield from $\underline{3}$. Careful inspection of the crude methylation product revealed the presence of ~5% doubly rearranged product $\underline{6}$.

The rearrangement of $\frac{4}{2}$ to $\frac{5}{2}$ is a unique example of a selective mono-Claisen rearrangement in which the rate of a second similar Claisen rearrangement $(\frac{5}{2} + \frac{6}{2})$ is much slower under the reaction conditions. Although the reasons for this interesting selectivity are unclear at this time, $\frac{5}{2}$ in practice, the mono-Claisen rearrangement obviates the need for selective differentiation of the two hydroxyl groups, a difficult task at best, in this case.

Palladium mediated allylic acetate displacement provided an ideal method for introduction of a second chemodifferentiated side chain with allylic retention and retention of stereochemistry. Alkylation of 7 with sodiodiethylmalonate using 5 mole % $Pd(0)dppe_2^6$ was unusually facile (<45 min, 25°C, THF). After semi-preparative HPLC, essentially a single regio- and stereoisomer was isolated in 96% yield. Structure 8 was confirmed by extensive 1H-NMR decoupling, as well as an off-resonance 13 C-NMR experiment. In particular, H_1 (δ 4.53) was coupled vicinally to H_6 and H_6 ' (5 Hz, 8 Hz) and H_2 (1.5 Hz), and allylically to H_3 (2 Hz). In contrast, H_4 (δ 2.78) was coupled to H_7 (10 Hz), H_{5e} and H_{5a} (1.8 Hz, 4 Hz), H_3 (5 Hz), and H_2 (<1 Hz). In addition, H_1 and H_4 exhibited a small long range coupling constant (J = <1 Hz). These coupling constants rule out

regioisomer $\underline{9}$ and are fully consistent with the indicated conformation, which minimizes 1,3-diaxial-like interactions.

Finally, catalytic osmylation of 8^8 gave a single cis-diol 10 in nearly quantitative yield. Appending of suitably functionalized side chains to provide an enantiocontrolled synthesis of pseudomonic acids A(1a) and C(2) is in progress. 9,10

References

- 1) Recipient of Dreyfus Grant for Newly Appointed Faculty in Chemistry (1981-86).
- 2) For references regarding isolation, activity, and synthesis see: Snider, B. B.; Phillips, G.B. J. Amer. Chem. Soc. (1982), 104, 1113.
- C.B. J. Amer. Chem. Soc. (1982), 104, 1113.
 3) Humuller, F. "Methods in Carbohydrate Chemistry, Vol. I", Academic Press, New York, (1962), 83.
- 4) Ireland, R. E.; Vevert, J. P. J. Org. Chem. (1980), 45, 4260 and references therein.
- 5) For references and an evaluation substituent effects on the Claisen rearrangement see: Carpenter, B. K.; Burrows, C. J. J. Amer. Chem. Soc. (1981), 103, 6983.
- 6) Pd(0)dppe2 = Palladium(0)bis-1,2-diphenylphosphinoethane. See: Trost, B. M. Acct. Chem. Res. (1980), 13, 385.
- 7) A small amount of another product (<1%) of undetermined structure was detected. For a study on substitution of carbohydrate derived allylic acetates see: Baer, H. H.; Hanna, Z. R. Cand. J. Chem. (1981), 59, 889.
- 8) Van Rheenan, V.; Kelly, R. C.; Cha, O. Y. Tetrahedron Lett. (1976), 1973.
- 9) Satisfactory elemental analysis and/or high resolution MS obtained for all new compounds.
- 10) The author wishes to thank Englehard Ind. and Johnson Matthey Inc. for generous loans of palladium salts.